name: "DCOD300_OverHead_250x141_DCOD300_250x141_deploy" input: "data" input_shape { dim: 1 dim: 3 dim: 141 dim: 250 } layer { name: "Convolution1" type: "Convolution" bottom: "data" top: "Convolution1" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm1" type: "BatchNorm" bottom: "Convolution1" top: "BatchNorm1" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale1" type: "Scale" bottom: "BatchNorm1" top: "BatchNorm1" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU1" type: "ReLU" bottom: "BatchNorm1" top: "BatchNorm1" } layer { name: "Convolution2" type: "Convolution" bottom: "BatchNorm1" top: "Convolution2" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "ConvolutionDepthwise1" type: "ConvolutionDepthwise" bottom: "Convolution2" top: "ConvolutionDepthwise1" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm2" type: "BatchNorm" bottom: "ConvolutionDepthwise1" top: "BatchNorm2" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale2" type: "Scale" bottom: "BatchNorm2" top: "BatchNorm2" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU2" type: "ReLU" bottom: "BatchNorm2" top: "BatchNorm2" } layer { name: "Convolution3" type: "Convolution" bottom: "BatchNorm2" top: "Convolution3" convolution_param { num_output: 128 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "ConvolutionDepthwise2" type: "ConvolutionDepthwise" bottom: "Convolution3" top: "ConvolutionDepthwise2" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm3" type: "BatchNorm" bottom: "ConvolutionDepthwise2" top: "BatchNorm3" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale3" type: "Scale" bottom: "BatchNorm3" top: "BatchNorm3" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU3" type: "ReLU" bottom: "BatchNorm3" top: "BatchNorm3" } layer { name: "Pooling1" type: "Pooling" bottom: "BatchNorm3" top: "Pooling1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "Convolution4" type: "Convolution" bottom: "Pooling1" top: "Convolution4" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm4" type: "BatchNorm" bottom: "Convolution4" top: "Convolution4" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale4" type: "Scale" bottom: "Convolution4" top: "Convolution4" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise3" type: "ConvolutionDepthwise" bottom: "Convolution4" top: "ConvolutionDepthwise3" convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm5" type: "BatchNorm" bottom: "ConvolutionDepthwise3" top: "ConvolutionDepthwise3" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale5" type: "Scale" bottom: "ConvolutionDepthwise3" top: "ConvolutionDepthwise3" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU4" type: "ReLU" bottom: "ConvolutionDepthwise3" top: "ConvolutionDepthwise3" } layer { name: "Concat1" type: "Concat" bottom: "Pooling1" bottom: "ConvolutionDepthwise3" top: "Concat1" concat_param { axis: 1 } } layer { name: "Convolution5" type: "Convolution" bottom: "Concat1" top: "Convolution5" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm6" type: "BatchNorm" bottom: "Convolution5" top: "Convolution5" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale6" type: "Scale" bottom: "Convolution5" top: "Convolution5" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise4" type: "ConvolutionDepthwise" bottom: "Convolution5" top: "ConvolutionDepthwise4" convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm7" type: "BatchNorm" bottom: "ConvolutionDepthwise4" top: "ConvolutionDepthwise4" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale7" type: "Scale" bottom: "ConvolutionDepthwise4" top: "ConvolutionDepthwise4" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU5" type: "ReLU" bottom: "ConvolutionDepthwise4" top: "ConvolutionDepthwise4" } layer { name: "Concat2" type: "Concat" bottom: "Concat1" bottom: "ConvolutionDepthwise4" top: "Concat2" concat_param { axis: 1 } } layer { name: "Convolution6" type: "Convolution" bottom: "Concat2" top: "Convolution6" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm8" type: "BatchNorm" bottom: "Convolution6" top: "Convolution6" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale8" type: "Scale" bottom: "Convolution6" top: "Convolution6" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise5" type: "ConvolutionDepthwise" bottom: "Convolution6" top: "ConvolutionDepthwise5" convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm9" type: "BatchNorm" bottom: "ConvolutionDepthwise5" top: "ConvolutionDepthwise5" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale9" type: "Scale" bottom: "ConvolutionDepthwise5" top: "ConvolutionDepthwise5" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU6" type: "ReLU" bottom: "ConvolutionDepthwise5" top: "ConvolutionDepthwise5" } layer { name: "Concat3" type: "Concat" bottom: "Concat2" bottom: "ConvolutionDepthwise5" top: "Concat3" concat_param { axis: 1 } } layer { name: "Convolution7" type: "Convolution" bottom: "Concat3" top: "Convolution7" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm10" type: "BatchNorm" bottom: "Convolution7" top: "Convolution7" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale10" type: "Scale" bottom: "Convolution7" top: "Convolution7" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise6" type: "ConvolutionDepthwise" bottom: "Convolution7" top: "ConvolutionDepthwise6" convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm11" type: "BatchNorm" bottom: "ConvolutionDepthwise6" top: "ConvolutionDepthwise6" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale11" type: "Scale" bottom: "ConvolutionDepthwise6" top: "ConvolutionDepthwise6" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU7" type: "ReLU" bottom: "ConvolutionDepthwise6" top: "ConvolutionDepthwise6" } layer { name: "Concat4" type: "Concat" bottom: "Concat3" bottom: "ConvolutionDepthwise6" top: "Concat4" concat_param { axis: 1 } } layer { name: "Convolution8" type: "Convolution" bottom: "Concat4" top: "Convolution8" convolution_param { num_output: 128 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm12" type: "BatchNorm" bottom: "Convolution8" top: "BatchNorm12" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale12" type: "Scale" bottom: "BatchNorm12" top: "BatchNorm12" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU8" type: "ReLU" bottom: "BatchNorm12" top: "ReLU8" } layer { name: "Pooling2" type: "Pooling" bottom: "ReLU8" top: "Pooling2" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "Convolution9" type: "Convolution" bottom: "Pooling2" top: "Convolution9" convolution_param { num_output: 48 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm13" type: "BatchNorm" bottom: "Convolution9" top: "Convolution9" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale13" type: "Scale" bottom: "Convolution9" top: "Convolution9" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise7" type: "ConvolutionDepthwise" bottom: "Convolution9" top: "ConvolutionDepthwise7" convolution_param { num_output: 48 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm14" type: "BatchNorm" bottom: "ConvolutionDepthwise7" top: "ConvolutionDepthwise7" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale14" type: "Scale" bottom: "ConvolutionDepthwise7" top: "ConvolutionDepthwise7" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU9" type: "ReLU" bottom: "ConvolutionDepthwise7" top: "ConvolutionDepthwise7" } layer { name: "Concat5" type: "Concat" bottom: "Pooling2" bottom: "ConvolutionDepthwise7" top: "Concat5" concat_param { axis: 1 } } layer { name: "Convolution10" type: "Convolution" bottom: "Concat5" top: "Convolution10" convolution_param { num_output: 48 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm15" type: "BatchNorm" bottom: "Convolution10" top: "Convolution10" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale15" type: "Scale" bottom: "Convolution10" top: "Convolution10" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise8" type: "ConvolutionDepthwise" bottom: "Convolution10" top: "ConvolutionDepthwise8" convolution_param { num_output: 48 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm16" type: "BatchNorm" bottom: "ConvolutionDepthwise8" top: "ConvolutionDepthwise8" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale16" type: "Scale" bottom: "ConvolutionDepthwise8" top: "ConvolutionDepthwise8" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU10" type: "ReLU" bottom: "ConvolutionDepthwise8" top: "ConvolutionDepthwise8" } layer { name: "Concat6" type: "Concat" bottom: "Concat5" bottom: "ConvolutionDepthwise8" top: "Concat6" concat_param { axis: 1 } } layer { name: "Convolution11" type: "Convolution" bottom: "Concat6" top: "Convolution11" convolution_param { num_output: 48 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm17" type: "BatchNorm" bottom: "Convolution11" top: "Convolution11" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale17" type: "Scale" bottom: "Convolution11" top: "Convolution11" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise9" type: "ConvolutionDepthwise" bottom: "Convolution11" top: "ConvolutionDepthwise9" convolution_param { num_output: 48 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm18" type: "BatchNorm" bottom: "ConvolutionDepthwise9" top: "ConvolutionDepthwise9" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale18" type: "Scale" bottom: "ConvolutionDepthwise9" top: "ConvolutionDepthwise9" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU11" type: "ReLU" bottom: "ConvolutionDepthwise9" top: "ConvolutionDepthwise9" } layer { name: "Concat7" type: "Concat" bottom: "Concat6" bottom: "ConvolutionDepthwise9" top: "Concat7" concat_param { axis: 1 } } layer { name: "Convolution12" type: "Convolution" bottom: "Concat7" top: "Convolution12" convolution_param { num_output: 48 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm19" type: "BatchNorm" bottom: "Convolution12" top: "Convolution12" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale19" type: "Scale" bottom: "Convolution12" top: "Convolution12" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise10" type: "ConvolutionDepthwise" bottom: "Convolution12" top: "ConvolutionDepthwise10" convolution_param { num_output: 48 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm20" type: "BatchNorm" bottom: "ConvolutionDepthwise10" top: "ConvolutionDepthwise10" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale20" type: "Scale" bottom: "ConvolutionDepthwise10" top: "ConvolutionDepthwise10" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU12" type: "ReLU" bottom: "ConvolutionDepthwise10" top: "ConvolutionDepthwise10" } layer { name: "Concat8" type: "Concat" bottom: "Concat7" bottom: "ConvolutionDepthwise10" top: "Concat8" concat_param { axis: 1 } } layer { name: "Convolution13" type: "Convolution" bottom: "Concat8" top: "Convolution13" convolution_param { num_output: 48 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm21" type: "BatchNorm" bottom: "Convolution13" top: "Convolution13" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale21" type: "Scale" bottom: "Convolution13" top: "Convolution13" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise11" type: "ConvolutionDepthwise" bottom: "Convolution13" top: "ConvolutionDepthwise11" convolution_param { num_output: 48 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm22" type: "BatchNorm" bottom: "ConvolutionDepthwise11" top: "ConvolutionDepthwise11" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale22" type: "Scale" bottom: "ConvolutionDepthwise11" top: "ConvolutionDepthwise11" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU13" type: "ReLU" bottom: "ConvolutionDepthwise11" top: "ConvolutionDepthwise11" } layer { name: "Concat9" type: "Concat" bottom: "Concat8" bottom: "ConvolutionDepthwise11" top: "Concat9" concat_param { axis: 1 } } layer { name: "Convolution14" type: "Convolution" bottom: "Concat9" top: "Convolution14" convolution_param { num_output: 48 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm23" type: "BatchNorm" bottom: "Convolution14" top: "Convolution14" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale23" type: "Scale" bottom: "Convolution14" top: "Convolution14" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise12" type: "ConvolutionDepthwise" bottom: "Convolution14" top: "ConvolutionDepthwise12" convolution_param { num_output: 48 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm24" type: "BatchNorm" bottom: "ConvolutionDepthwise12" top: "ConvolutionDepthwise12" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale24" type: "Scale" bottom: "ConvolutionDepthwise12" top: "ConvolutionDepthwise12" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU14" type: "ReLU" bottom: "ConvolutionDepthwise12" top: "ConvolutionDepthwise12" } layer { name: "Concat10" type: "Concat" bottom: "Concat9" bottom: "ConvolutionDepthwise12" top: "Concat10" concat_param { axis: 1 } } layer { name: "Convolution15" type: "Convolution" bottom: "Concat10" top: "Convolution15" convolution_param { num_output: 128 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm25" type: "BatchNorm" bottom: "Convolution15" top: "BatchNorm25" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale25" type: "Scale" bottom: "BatchNorm25" top: "BatchNorm25" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "First" type: "ReLU" bottom: "BatchNorm25" top: "First" } layer { name: "Pooling3" type: "Pooling" bottom: "First" top: "Pooling3" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "Convolution16" type: "Convolution" bottom: "Pooling3" top: "Convolution16" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm26" type: "BatchNorm" bottom: "Convolution16" top: "BatchNorm26" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale26" type: "Scale" bottom: "BatchNorm26" top: "BatchNorm26" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU15" type: "ReLU" bottom: "BatchNorm26" top: "BatchNorm26" } layer { name: "Pooling4" type: "Pooling" bottom: "First" top: "Pooling4" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "Convolution17" type: "Convolution" bottom: "Pooling4" top: "Convolution17" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm27" type: "BatchNorm" bottom: "Convolution17" top: "Convolution17" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale27" type: "Scale" bottom: "Convolution17" top: "Convolution17" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise13" type: "ConvolutionDepthwise" bottom: "Convolution17" top: "ConvolutionDepthwise13" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm28" type: "BatchNorm" bottom: "ConvolutionDepthwise13" top: "ConvolutionDepthwise13" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale28" type: "Scale" bottom: "ConvolutionDepthwise13" top: "ConvolutionDepthwise13" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU16" type: "ReLU" bottom: "ConvolutionDepthwise13" top: "ConvolutionDepthwise13" } layer { name: "Concat11" type: "Concat" bottom: "Pooling4" bottom: "ConvolutionDepthwise13" top: "Concat11" concat_param { axis: 1 } } layer { name: "Convolution18" type: "Convolution" bottom: "Concat11" top: "Convolution18" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm29" type: "BatchNorm" bottom: "Convolution18" top: "Convolution18" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale29" type: "Scale" bottom: "Convolution18" top: "Convolution18" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise14" type: "ConvolutionDepthwise" bottom: "Convolution18" top: "ConvolutionDepthwise14" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm30" type: "BatchNorm" bottom: "ConvolutionDepthwise14" top: "ConvolutionDepthwise14" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale30" type: "Scale" bottom: "ConvolutionDepthwise14" top: "ConvolutionDepthwise14" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU17" type: "ReLU" bottom: "ConvolutionDepthwise14" top: "ConvolutionDepthwise14" } layer { name: "Concat12" type: "Concat" bottom: "Concat11" bottom: "ConvolutionDepthwise14" top: "Concat12" concat_param { axis: 1 } } layer { name: "Convolution19" type: "Convolution" bottom: "Concat12" top: "Convolution19" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm31" type: "BatchNorm" bottom: "Convolution19" top: "Convolution19" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale31" type: "Scale" bottom: "Convolution19" top: "Convolution19" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise15" type: "ConvolutionDepthwise" bottom: "Convolution19" top: "ConvolutionDepthwise15" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm32" type: "BatchNorm" bottom: "ConvolutionDepthwise15" top: "ConvolutionDepthwise15" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale32" type: "Scale" bottom: "ConvolutionDepthwise15" top: "ConvolutionDepthwise15" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU18" type: "ReLU" bottom: "ConvolutionDepthwise15" top: "ConvolutionDepthwise15" } layer { name: "Concat13" type: "Concat" bottom: "Concat12" bottom: "ConvolutionDepthwise15" top: "Concat13" concat_param { axis: 1 } } layer { name: "Convolution20" type: "Convolution" bottom: "Concat13" top: "Convolution20" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm33" type: "BatchNorm" bottom: "Convolution20" top: "Convolution20" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale33" type: "Scale" bottom: "Convolution20" top: "Convolution20" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise16" type: "ConvolutionDepthwise" bottom: "Convolution20" top: "ConvolutionDepthwise16" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm34" type: "BatchNorm" bottom: "ConvolutionDepthwise16" top: "ConvolutionDepthwise16" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale34" type: "Scale" bottom: "ConvolutionDepthwise16" top: "ConvolutionDepthwise16" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU19" type: "ReLU" bottom: "ConvolutionDepthwise16" top: "ConvolutionDepthwise16" } layer { name: "Concat14" type: "Concat" bottom: "Concat13" bottom: "ConvolutionDepthwise16" top: "Concat14" concat_param { axis: 1 } } layer { name: "Convolution21" type: "Convolution" bottom: "Concat14" top: "Convolution21" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm35" type: "BatchNorm" bottom: "Convolution21" top: "Convolution21" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale35" type: "Scale" bottom: "Convolution21" top: "Convolution21" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise17" type: "ConvolutionDepthwise" bottom: "Convolution21" top: "ConvolutionDepthwise17" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm36" type: "BatchNorm" bottom: "ConvolutionDepthwise17" top: "ConvolutionDepthwise17" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale36" type: "Scale" bottom: "ConvolutionDepthwise17" top: "ConvolutionDepthwise17" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU20" type: "ReLU" bottom: "ConvolutionDepthwise17" top: "ConvolutionDepthwise17" } layer { name: "Concat15" type: "Concat" bottom: "Concat14" bottom: "ConvolutionDepthwise17" top: "Concat15" concat_param { axis: 1 } } layer { name: "Convolution22" type: "Convolution" bottom: "Concat15" top: "Convolution22" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm37" type: "BatchNorm" bottom: "Convolution22" top: "Convolution22" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale37" type: "Scale" bottom: "Convolution22" top: "Convolution22" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise18" type: "ConvolutionDepthwise" bottom: "Convolution22" top: "ConvolutionDepthwise18" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm38" type: "BatchNorm" bottom: "ConvolutionDepthwise18" top: "ConvolutionDepthwise18" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale38" type: "Scale" bottom: "ConvolutionDepthwise18" top: "ConvolutionDepthwise18" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU21" type: "ReLU" bottom: "ConvolutionDepthwise18" top: "ConvolutionDepthwise18" } layer { name: "Concat16" type: "Concat" bottom: "Concat15" bottom: "ConvolutionDepthwise18" top: "Concat16" concat_param { axis: 1 } } layer { name: "Convolution23" type: "Convolution" bottom: "Concat16" top: "Convolution23" convolution_param { num_output: 256 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm39" type: "BatchNorm" bottom: "Convolution23" top: "BatchNorm39" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale39" type: "Scale" bottom: "BatchNorm39" top: "BatchNorm39" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU22" type: "ReLU" bottom: "BatchNorm39" top: "ReLU22" } layer { name: "Convolution24" type: "Convolution" bottom: "ReLU22" top: "Convolution24" convolution_param { num_output: 80 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm40" type: "BatchNorm" bottom: "Convolution24" top: "Convolution24" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale40" type: "Scale" bottom: "Convolution24" top: "Convolution24" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise19" type: "ConvolutionDepthwise" bottom: "Convolution24" top: "ConvolutionDepthwise19" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm41" type: "BatchNorm" bottom: "ConvolutionDepthwise19" top: "ConvolutionDepthwise19" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale41" type: "Scale" bottom: "ConvolutionDepthwise19" top: "ConvolutionDepthwise19" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU23" type: "ReLU" bottom: "ConvolutionDepthwise19" top: "ConvolutionDepthwise19" } layer { name: "Concat17" type: "Concat" bottom: "ReLU22" bottom: "ConvolutionDepthwise19" top: "Concat17" concat_param { axis: 1 } } layer { name: "Convolution25" type: "Convolution" bottom: "Concat17" top: "Convolution25" convolution_param { num_output: 80 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm42" type: "BatchNorm" bottom: "Convolution25" top: "Convolution25" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale42" type: "Scale" bottom: "Convolution25" top: "Convolution25" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise20" type: "ConvolutionDepthwise" bottom: "Convolution25" top: "ConvolutionDepthwise20" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm43" type: "BatchNorm" bottom: "ConvolutionDepthwise20" top: "ConvolutionDepthwise20" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale43" type: "Scale" bottom: "ConvolutionDepthwise20" top: "ConvolutionDepthwise20" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU24" type: "ReLU" bottom: "ConvolutionDepthwise20" top: "ConvolutionDepthwise20" } layer { name: "Concat18" type: "Concat" bottom: "Concat17" bottom: "ConvolutionDepthwise20" top: "Concat18" concat_param { axis: 1 } } layer { name: "Convolution26" type: "Convolution" bottom: "Concat18" top: "Convolution26" convolution_param { num_output: 80 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm44" type: "BatchNorm" bottom: "Convolution26" top: "Convolution26" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale44" type: "Scale" bottom: "Convolution26" top: "Convolution26" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise21" type: "ConvolutionDepthwise" bottom: "Convolution26" top: "ConvolutionDepthwise21" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm45" type: "BatchNorm" bottom: "ConvolutionDepthwise21" top: "ConvolutionDepthwise21" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale45" type: "Scale" bottom: "ConvolutionDepthwise21" top: "ConvolutionDepthwise21" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU25" type: "ReLU" bottom: "ConvolutionDepthwise21" top: "ConvolutionDepthwise21" } layer { name: "Concat19" type: "Concat" bottom: "Concat18" bottom: "ConvolutionDepthwise21" top: "Concat19" concat_param { axis: 1 } } layer { name: "Convolution27" type: "Convolution" bottom: "Concat19" top: "Convolution27" convolution_param { num_output: 80 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm46" type: "BatchNorm" bottom: "Convolution27" top: "Convolution27" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale46" type: "Scale" bottom: "Convolution27" top: "Convolution27" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise22" type: "ConvolutionDepthwise" bottom: "Convolution27" top: "ConvolutionDepthwise22" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm47" type: "BatchNorm" bottom: "ConvolutionDepthwise22" top: "ConvolutionDepthwise22" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale47" type: "Scale" bottom: "ConvolutionDepthwise22" top: "ConvolutionDepthwise22" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU26" type: "ReLU" bottom: "ConvolutionDepthwise22" top: "ConvolutionDepthwise22" } layer { name: "Concat20" type: "Concat" bottom: "Concat19" bottom: "ConvolutionDepthwise22" top: "Concat20" concat_param { axis: 1 } } layer { name: "Convolution28" type: "Convolution" bottom: "Concat20" top: "Convolution28" convolution_param { num_output: 80 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm48" type: "BatchNorm" bottom: "Convolution28" top: "Convolution28" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale48" type: "Scale" bottom: "Convolution28" top: "Convolution28" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise23" type: "ConvolutionDepthwise" bottom: "Convolution28" top: "ConvolutionDepthwise23" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm49" type: "BatchNorm" bottom: "ConvolutionDepthwise23" top: "ConvolutionDepthwise23" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale49" type: "Scale" bottom: "ConvolutionDepthwise23" top: "ConvolutionDepthwise23" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU27" type: "ReLU" bottom: "ConvolutionDepthwise23" top: "ConvolutionDepthwise23" } layer { name: "Concat21" type: "Concat" bottom: "Concat20" bottom: "ConvolutionDepthwise23" top: "Concat21" concat_param { axis: 1 } } layer { name: "Convolution29" type: "Convolution" bottom: "Concat21" top: "Convolution29" convolution_param { num_output: 80 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm50" type: "BatchNorm" bottom: "Convolution29" top: "Convolution29" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale50" type: "Scale" bottom: "Convolution29" top: "Convolution29" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ConvolutionDepthwise24" type: "ConvolutionDepthwise" bottom: "Convolution29" top: "ConvolutionDepthwise24" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm51" type: "BatchNorm" bottom: "ConvolutionDepthwise24" top: "ConvolutionDepthwise24" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale51" type: "Scale" bottom: "ConvolutionDepthwise24" top: "ConvolutionDepthwise24" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU28" type: "ReLU" bottom: "ConvolutionDepthwise24" top: "ConvolutionDepthwise24" } layer { name: "Concat22" type: "Concat" bottom: "Concat21" bottom: "ConvolutionDepthwise24" top: "Concat22" concat_param { axis: 1 } } layer { name: "Convolution30" type: "Convolution" bottom: "Concat22" top: "Convolution30" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm52" type: "BatchNorm" bottom: "Convolution30" top: "BatchNorm52" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale52" type: "Scale" bottom: "BatchNorm52" top: "BatchNorm52" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU29" type: "ReLU" bottom: "BatchNorm52" top: "ReLU29" } layer { name: "Second" type: "Concat" bottom: "BatchNorm26" bottom: "ReLU29" top: "Second" concat_param { axis: 1 } } layer { name: "Pooling5" type: "Pooling" bottom: "Second" top: "Pooling5" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "Convolution31" type: "Convolution" bottom: "Pooling5" top: "Convolution31" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm53" type: "BatchNorm" bottom: "Convolution31" top: "BatchNorm53" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale53" type: "Scale" bottom: "BatchNorm53" top: "BatchNorm53" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU30" type: "ReLU" bottom: "BatchNorm53" top: "BatchNorm53" } layer { name: "Convolution32" type: "Convolution" bottom: "Second" top: "Convolution32" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "ConvolutionDepthwise25" type: "ConvolutionDepthwise" bottom: "Convolution32" top: "ConvolutionDepthwise25" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm54" type: "BatchNorm" bottom: "ConvolutionDepthwise25" top: "BatchNorm54" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale54" type: "Scale" bottom: "BatchNorm54" top: "BatchNorm54" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU31" type: "ReLU" bottom: "BatchNorm54" top: "BatchNorm54" } layer { name: "Third" type: "Concat" bottom: "BatchNorm53" bottom: "BatchNorm54" top: "Third" concat_param { axis: 1 } } layer { name: "Pooling6" type: "Pooling" bottom: "Third" top: "Pooling6" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "Convolution33" type: "Convolution" bottom: "Pooling6" top: "Convolution33" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm55" type: "BatchNorm" bottom: "Convolution33" top: "BatchNorm55" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale55" type: "Scale" bottom: "BatchNorm55" top: "BatchNorm55" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU32" type: "ReLU" bottom: "BatchNorm55" top: "BatchNorm55" } layer { name: "Convolution34" type: "Convolution" bottom: "Third" top: "Convolution34" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "ConvolutionDepthwise26" type: "ConvolutionDepthwise" bottom: "Convolution34" top: "ConvolutionDepthwise26" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm56" type: "BatchNorm" bottom: "ConvolutionDepthwise26" top: "BatchNorm56" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale56" type: "Scale" bottom: "BatchNorm56" top: "BatchNorm56" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU33" type: "ReLU" bottom: "BatchNorm56" top: "BatchNorm56" } layer { name: "Fourth" type: "Concat" bottom: "BatchNorm55" bottom: "BatchNorm56" top: "Fourth" concat_param { axis: 1 } } layer { name: "Pooling7" type: "Pooling" bottom: "Fourth" top: "Pooling7" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "Convolution35" type: "Convolution" bottom: "Pooling7" top: "Convolution35" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm57" type: "BatchNorm" bottom: "Convolution35" top: "BatchNorm57" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale57" type: "Scale" bottom: "BatchNorm57" top: "BatchNorm57" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU34" type: "ReLU" bottom: "BatchNorm57" top: "BatchNorm57" } layer { name: "Convolution36" type: "Convolution" bottom: "Fourth" top: "Convolution36" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "ConvolutionDepthwise27" type: "ConvolutionDepthwise" bottom: "Convolution36" top: "ConvolutionDepthwise27" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm58" type: "BatchNorm" bottom: "ConvolutionDepthwise27" top: "BatchNorm58" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale58" type: "Scale" bottom: "BatchNorm58" top: "BatchNorm58" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU35" type: "ReLU" bottom: "BatchNorm58" top: "BatchNorm58" } layer { name: "Fifth" type: "Concat" bottom: "BatchNorm57" bottom: "BatchNorm58" top: "Fifth" concat_param { axis: 1 } } layer { name: "Pooling8" type: "Pooling" bottom: "Fifth" top: "Pooling8" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "Convolution37" type: "Convolution" bottom: "Pooling8" top: "Convolution37" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm59" type: "BatchNorm" bottom: "Convolution37" top: "BatchNorm59" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale59" type: "Scale" bottom: "BatchNorm59" top: "BatchNorm59" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU36" type: "ReLU" bottom: "BatchNorm59" top: "BatchNorm59" } layer { name: "Convolution38" type: "Convolution" bottom: "Fifth" top: "Convolution38" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "ConvolutionDepthwise28" type: "ConvolutionDepthwise" bottom: "Convolution38" top: "ConvolutionDepthwise28" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "BatchNorm60" type: "BatchNorm" bottom: "ConvolutionDepthwise28" top: "BatchNorm60" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "Scale60" type: "Scale" bottom: "BatchNorm60" top: "BatchNorm60" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU37" type: "ReLU" bottom: "BatchNorm60" top: "BatchNorm60" } layer { name: "Sixth" type: "Concat" bottom: "BatchNorm59" bottom: "BatchNorm60" top: "Sixth" concat_param { axis: 1 } } layer { name: "Upsample1" type: "Upsample" bottom: "Fifth" bottom: "Sixth" top: "Upsample1" propagate_down: false propagate_down: true } layer { name: "ConvolutionDepthwise29" type: "ConvolutionDepthwise" bottom: "Upsample1" top: "ConvolutionDepthwise29" convolution_param { num_output: 128 bias_term: true pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "Eltwise1" type: "Eltwise" bottom: "ConvolutionDepthwise29" bottom: "Fifth" top: "Eltwise1" } layer { name: "Fifth_out" type: "ReLU" bottom: "Eltwise1" top: "Eltwise1" } layer { name: "Upsample2" type: "Upsample" bottom: "Fourth" bottom: "Eltwise1" top: "Upsample2" propagate_down: false propagate_down: true } layer { name: "ConvolutionDepthwise30" type: "ConvolutionDepthwise" bottom: "Upsample2" top: "ConvolutionDepthwise30" convolution_param { num_output: 128 bias_term: true pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "Eltwise2" type: "Eltwise" bottom: "ConvolutionDepthwise30" bottom: "Fourth" top: "Eltwise2" } layer { name: "Fourth_out" type: "ReLU" bottom: "Eltwise2" top: "Eltwise2" } layer { name: "Upsample3" type: "Upsample" bottom: "Third" bottom: "Eltwise2" top: "Upsample3" propagate_down: false propagate_down: true } layer { name: "ConvolutionDepthwise31" type: "ConvolutionDepthwise" bottom: "Upsample3" top: "ConvolutionDepthwise31" convolution_param { num_output: 128 bias_term: true pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "Eltwise3" type: "Eltwise" bottom: "ConvolutionDepthwise31" bottom: "Third" top: "Eltwise3" } layer { name: "Third_out" type: "ReLU" bottom: "Eltwise3" top: "Eltwise3" } layer { name: "Upsample4" type: "Upsample" bottom: "Second" bottom: "Eltwise3" top: "Upsample4" propagate_down: false propagate_down: true } layer { name: "ConvolutionDepthwise32" type: "ConvolutionDepthwise" bottom: "Upsample4" top: "ConvolutionDepthwise32" convolution_param { num_output: 128 bias_term: true pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "Eltwise4" type: "Eltwise" bottom: "ConvolutionDepthwise32" bottom: "Second" top: "Eltwise4" } layer { name: "Second_out" type: "ReLU" bottom: "Eltwise4" top: "Eltwise4" } layer { name: "Upsample5" type: "Upsample" bottom: "First" bottom: "Eltwise4" top: "Upsample5" propagate_down: false propagate_down: true } layer { name: "ConvolutionDepthwise33" type: "ConvolutionDepthwise" bottom: "Upsample5" top: "ConvolutionDepthwise33" convolution_param { num_output: 128 bias_term: true pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "Convolution39" type: "Convolution" bottom: "ConvolutionDepthwise33" top: "Convolution39" convolution_param { num_output: 128 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "Eltwise5" type: "Eltwise" bottom: "Convolution39" bottom: "First" top: "Eltwise5" } layer { name: "First_out" type: "ReLU" bottom: "Eltwise5" top: "Eltwise5" } layer { name: "First_out_norm" type: "Normalize" bottom: "Eltwise5" top: "First_out_norm" norm_param { across_spatial: false scale_filler { type: "constant" value: 20.0 } channel_shared: false } } layer { name: "First_out_norm_mbox_loc_1x1_conv" type: "Convolution" bottom: "First_out_norm" top: "First_out_norm_mbox_loc_1x1_conv" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.00999999977648 } } } layer { name: "First_out_norm_mbox_loc_dw_conv" type: "ConvolutionDepthwise" bottom: "First_out_norm_mbox_loc_1x1_conv" top: "First_out_norm_mbox_loc_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } convolution_param { num_output: 16 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "First_out_norm_mbox_loc_bn" type: "BatchNorm" bottom: "First_out_norm_mbox_loc_dw_conv" top: "First_out_norm_mbox_loc_dw_conv" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { moving_average_fraction: 0.999000012875 eps: 0.0010000000475 } } layer { name: "First_out_norm_mbox_loc_sb" type: "Scale" bottom: "First_out_norm_mbox_loc_dw_conv" top: "First_out_norm_mbox_loc_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { type: "constant" value: 1.0 } bias_term: true bias_filler { type: "constant" value: 0.0 } } } layer { name: "First_out_norm_mbox_loc_sb_perm" type: "Permute" bottom: "First_out_norm_mbox_loc_dw_conv" top: "First_out_norm_mbox_loc_sb_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "First_out_norm_mbox_loc_sb_flat" type: "Flatten" bottom: "First_out_norm_mbox_loc_sb_perm" top: "First_out_norm_mbox_loc_sb_flat" flatten_param { axis: 1 } } layer { name: "First_out_norm_mbox_conf_1x1_conv" type: "Convolution" bottom: "First_out_norm" top: "First_out_norm_mbox_conf_1x1_conv" convolution_param { num_output: 8 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.10000000149 } } } layer { name: "First_out_norm_mbox_conf_dw_conv" type: "ConvolutionDepthwise" bottom: "First_out_norm_mbox_conf_1x1_conv" top: "First_out_norm_mbox_conf_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } convolution_param { num_output: 8 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "First_out_norm_mbox_conf_bn" type: "BatchNorm" bottom: "First_out_norm_mbox_conf_dw_conv" top: "First_out_norm_mbox_conf_dw_conv" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { moving_average_fraction: 0.999000012875 eps: 0.0010000000475 } } layer { name: "First_out_norm_mbox_conf_sb" type: "Scale" bottom: "First_out_norm_mbox_conf_dw_conv" top: "First_out_norm_mbox_conf_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { type: "constant" value: 1.0 } bias_term: true bias_filler { type: "constant" value: 0.0 } } } layer { name: "First_out_norm_mbox_conf_sb_perm" type: "Permute" bottom: "First_out_norm_mbox_conf_dw_conv" top: "First_out_norm_mbox_conf_sb_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "First_out_norm_mbox_conf_sb_flat" type: "Flatten" bottom: "First_out_norm_mbox_conf_sb_perm" top: "First_out_norm_mbox_conf_sb_flat" flatten_param { axis: 1 } } layer { name: "First_out_norm_mbox_priorbox" type: "PriorBox" bottom: "First_out_norm" bottom: "data" top: "First_out_norm_mbox_priorbox" prior_box_param { min_size: 30.0 max_size: 60.0 aspect_ratio: 2.0 flip: true clip: false variance: 0.10000000149 variance: 0.10000000149 variance: 0.20000000298 variance: 0.20000000298 step: 8.0 offset: 0.5 } } layer { name: "Second_out_norm" type: "Normalize" bottom: "Eltwise4" top: "Second_out_norm" norm_param { across_spatial: false scale_filler { type: "constant" value: 20.0 } channel_shared: false } } layer { name: "Second_out_norm_mbox_loc_1x1_conv" type: "Convolution" bottom: "Second_out_norm" top: "Second_out_norm_mbox_loc_1x1_conv" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 24 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.00999999977648 } } } layer { name: "Second_out_norm_mbox_loc_dw_conv" type: "ConvolutionDepthwise" bottom: "Second_out_norm_mbox_loc_1x1_conv" top: "Second_out_norm_mbox_loc_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } convolution_param { num_output: 24 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "Second_out_norm_mbox_loc_bn" type: "BatchNorm" bottom: "Second_out_norm_mbox_loc_dw_conv" top: "Second_out_norm_mbox_loc_dw_conv" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { moving_average_fraction: 0.999000012875 eps: 0.0010000000475 } } layer { name: "Second_out_norm_mbox_loc_sb" type: "Scale" bottom: "Second_out_norm_mbox_loc_dw_conv" top: "Second_out_norm_mbox_loc_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { type: "constant" value: 1.0 } bias_term: true bias_filler { type: "constant" value: 0.0 } } } layer { name: "Second_out_norm_mbox_loc_sb_perm" type: "Permute" bottom: "Second_out_norm_mbox_loc_dw_conv" top: "Second_out_norm_mbox_loc_sb_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "Second_out_norm_mbox_loc_sb_flat" type: "Flatten" bottom: "Second_out_norm_mbox_loc_sb_perm" top: "Second_out_norm_mbox_loc_sb_flat" flatten_param { axis: 1 } } layer { name: "Second_out_norm_mbox_conf_1x1_conv" type: "Convolution" bottom: "Second_out_norm" top: "Second_out_norm_mbox_conf_1x1_conv" convolution_param { num_output: 12 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.10000000149 } } } layer { name: "Second_out_norm_mbox_conf_dw_conv" type: "ConvolutionDepthwise" bottom: "Second_out_norm_mbox_conf_1x1_conv" top: "Second_out_norm_mbox_conf_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } convolution_param { num_output: 12 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "Second_out_norm_mbox_conf_bn" type: "BatchNorm" bottom: "Second_out_norm_mbox_conf_dw_conv" top: "Second_out_norm_mbox_conf_dw_conv" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { moving_average_fraction: 0.999000012875 eps: 0.0010000000475 } } layer { name: "Second_out_norm_mbox_conf_sb" type: "Scale" bottom: "Second_out_norm_mbox_conf_dw_conv" top: "Second_out_norm_mbox_conf_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { type: "constant" value: 1.0 } bias_term: true bias_filler { type: "constant" value: 0.0 } } } layer { name: "Second_out_norm_mbox_conf_sb_perm" type: "Permute" bottom: "Second_out_norm_mbox_conf_dw_conv" top: "Second_out_norm_mbox_conf_sb_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "Second_out_norm_mbox_conf_sb_flat" type: "Flatten" bottom: "Second_out_norm_mbox_conf_sb_perm" top: "Second_out_norm_mbox_conf_sb_flat" flatten_param { axis: 1 } } layer { name: "Second_out_norm_mbox_priorbox" type: "PriorBox" bottom: "Second_out_norm" bottom: "data" top: "Second_out_norm_mbox_priorbox" prior_box_param { min_size: 60.0 max_size: 111.0 aspect_ratio: 2.0 aspect_ratio: 3.0 flip: true clip: false variance: 0.10000000149 variance: 0.10000000149 variance: 0.20000000298 variance: 0.20000000298 step: 16.0 offset: 0.5 } } layer { name: "Third_out_norm" type: "Normalize" bottom: "Eltwise3" top: "Third_out_norm" norm_param { across_spatial: false scale_filler { type: "constant" value: 20.0 } channel_shared: false } } layer { name: "Third_out_norm_mbox_loc_1x1_conv" type: "Convolution" bottom: "Third_out_norm" top: "Third_out_norm_mbox_loc_1x1_conv" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 24 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.00999999977648 } } } layer { name: "Third_out_norm_mbox_loc_dw_conv" type: "ConvolutionDepthwise" bottom: "Third_out_norm_mbox_loc_1x1_conv" top: "Third_out_norm_mbox_loc_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } convolution_param { num_output: 24 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "Third_out_norm_mbox_loc_bn" type: "BatchNorm" bottom: "Third_out_norm_mbox_loc_dw_conv" top: "Third_out_norm_mbox_loc_dw_conv" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { moving_average_fraction: 0.999000012875 eps: 0.0010000000475 } } layer { name: "Third_out_norm_mbox_loc_sb" type: "Scale" bottom: "Third_out_norm_mbox_loc_dw_conv" top: "Third_out_norm_mbox_loc_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { type: "constant" value: 1.0 } bias_term: true bias_filler { type: "constant" value: 0.0 } } } layer { name: "Third_out_norm_mbox_loc_sb_perm" type: "Permute" bottom: "Third_out_norm_mbox_loc_dw_conv" top: "Third_out_norm_mbox_loc_sb_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "Third_out_norm_mbox_loc_sb_flat" type: "Flatten" bottom: "Third_out_norm_mbox_loc_sb_perm" top: "Third_out_norm_mbox_loc_sb_flat" flatten_param { axis: 1 } } layer { name: "Third_out_norm_mbox_conf_1x1_conv" type: "Convolution" bottom: "Third_out_norm" top: "Third_out_norm_mbox_conf_1x1_conv" convolution_param { num_output: 12 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.10000000149 } } } layer { name: "Third_out_norm_mbox_conf_dw_conv" type: "ConvolutionDepthwise" bottom: "Third_out_norm_mbox_conf_1x1_conv" top: "Third_out_norm_mbox_conf_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } convolution_param { num_output: 12 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "Third_out_norm_mbox_conf_bn" type: "BatchNorm" bottom: "Third_out_norm_mbox_conf_dw_conv" top: "Third_out_norm_mbox_conf_dw_conv" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { moving_average_fraction: 0.999000012875 eps: 0.0010000000475 } } layer { name: "Third_out_norm_mbox_conf_sb" type: "Scale" bottom: "Third_out_norm_mbox_conf_dw_conv" top: "Third_out_norm_mbox_conf_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { type: "constant" value: 1.0 } bias_term: true bias_filler { type: "constant" value: 0.0 } } } layer { name: "Third_out_norm_mbox_conf_sb_perm" type: "Permute" bottom: "Third_out_norm_mbox_conf_dw_conv" top: "Third_out_norm_mbox_conf_sb_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "Third_out_norm_mbox_conf_sb_flat" type: "Flatten" bottom: "Third_out_norm_mbox_conf_sb_perm" top: "Third_out_norm_mbox_conf_sb_flat" flatten_param { axis: 1 } } layer { name: "Third_out_norm_mbox_priorbox" type: "PriorBox" bottom: "Third_out_norm" bottom: "data" top: "Third_out_norm_mbox_priorbox" prior_box_param { min_size: 111.0 max_size: 162.0 aspect_ratio: 2.0 aspect_ratio: 3.0 flip: true clip: false variance: 0.10000000149 variance: 0.10000000149 variance: 0.20000000298 variance: 0.20000000298 step: 32.0 offset: 0.5 } } layer { name: "Fourth_norm" type: "Normalize" bottom: "Fourth" top: "Fourth_norm" norm_param { across_spatial: false scale_filler { type: "constant" value: 20.0 } channel_shared: false } } layer { name: "Fourth_norm_mbox_loc_1x1_conv" type: "Convolution" bottom: "Fourth_norm" top: "Fourth_norm_mbox_loc_1x1_conv" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 24 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.00999999977648 } } } layer { name: "Fourth_norm_mbox_loc_dw_conv" type: "ConvolutionDepthwise" bottom: "Fourth_norm_mbox_loc_1x1_conv" top: "Fourth_norm_mbox_loc_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } convolution_param { num_output: 24 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "Fourth_norm_mbox_loc_bn" type: "BatchNorm" bottom: "Fourth_norm_mbox_loc_dw_conv" top: "Fourth_norm_mbox_loc_dw_conv" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { moving_average_fraction: 0.999000012875 eps: 0.0010000000475 } } layer { name: "Fourth_norm_mbox_loc_sb" type: "Scale" bottom: "Fourth_norm_mbox_loc_dw_conv" top: "Fourth_norm_mbox_loc_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { type: "constant" value: 1.0 } bias_term: true bias_filler { type: "constant" value: 0.0 } } } layer { name: "Fourth_norm_mbox_loc_sb_perm" type: "Permute" bottom: "Fourth_norm_mbox_loc_dw_conv" top: "Fourth_norm_mbox_loc_sb_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "Fourth_norm_mbox_loc_sb_flat" type: "Flatten" bottom: "Fourth_norm_mbox_loc_sb_perm" top: "Fourth_norm_mbox_loc_sb_flat" flatten_param { axis: 1 } } layer { name: "Fourth_norm_mbox_conf_1x1_conv" type: "Convolution" bottom: "Fourth_norm" top: "Fourth_norm_mbox_conf_1x1_conv" convolution_param { num_output: 12 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.10000000149 } } } layer { name: "Fourth_norm_mbox_conf_dw_conv" type: "ConvolutionDepthwise" bottom: "Fourth_norm_mbox_conf_1x1_conv" top: "Fourth_norm_mbox_conf_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } convolution_param { num_output: 12 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "Fourth_norm_mbox_conf_bn" type: "BatchNorm" bottom: "Fourth_norm_mbox_conf_dw_conv" top: "Fourth_norm_mbox_conf_dw_conv" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { moving_average_fraction: 0.999000012875 eps: 0.0010000000475 } } layer { name: "Fourth_norm_mbox_conf_sb" type: "Scale" bottom: "Fourth_norm_mbox_conf_dw_conv" top: "Fourth_norm_mbox_conf_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { type: "constant" value: 1.0 } bias_term: true bias_filler { type: "constant" value: 0.0 } } } layer { name: "Fourth_norm_mbox_conf_sb_perm" type: "Permute" bottom: "Fourth_norm_mbox_conf_dw_conv" top: "Fourth_norm_mbox_conf_sb_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "Fourth_norm_mbox_conf_sb_flat" type: "Flatten" bottom: "Fourth_norm_mbox_conf_sb_perm" top: "Fourth_norm_mbox_conf_sb_flat" flatten_param { axis: 1 } } layer { name: "Fourth_norm_mbox_priorbox" type: "PriorBox" bottom: "Fourth_norm" bottom: "data" top: "Fourth_norm_mbox_priorbox" prior_box_param { min_size: 162.0 max_size: 213.0 aspect_ratio: 2.0 aspect_ratio: 3.0 flip: true clip: false variance: 0.10000000149 variance: 0.10000000149 variance: 0.20000000298 variance: 0.20000000298 step: 64.0 offset: 0.5 } } layer { name: "Fifth_norm" type: "Normalize" bottom: "Fifth" top: "Fifth_norm" norm_param { across_spatial: false scale_filler { type: "constant" value: 20.0 } channel_shared: false } } layer { name: "Fifth_norm_mbox_loc_1x1_conv" type: "Convolution" bottom: "Fifth_norm" top: "Fifth_norm_mbox_loc_1x1_conv" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.00999999977648 } } } layer { name: "Fifth_norm_mbox_loc_dw_conv" type: "ConvolutionDepthwise" bottom: "Fifth_norm_mbox_loc_1x1_conv" top: "Fifth_norm_mbox_loc_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } convolution_param { num_output: 16 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "Fifth_norm_mbox_loc_bn" type: "BatchNorm" bottom: "Fifth_norm_mbox_loc_dw_conv" top: "Fifth_norm_mbox_loc_dw_conv" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { moving_average_fraction: 0.999000012875 eps: 0.0010000000475 } } layer { name: "Fifth_norm_mbox_loc_sb" type: "Scale" bottom: "Fifth_norm_mbox_loc_dw_conv" top: "Fifth_norm_mbox_loc_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { type: "constant" value: 1.0 } bias_term: true bias_filler { type: "constant" value: 0.0 } } } layer { name: "Fifth_norm_mbox_loc_sb_perm" type: "Permute" bottom: "Fifth_norm_mbox_loc_dw_conv" top: "Fifth_norm_mbox_loc_sb_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "Fifth_norm_mbox_loc_sb_flat" type: "Flatten" bottom: "Fifth_norm_mbox_loc_sb_perm" top: "Fifth_norm_mbox_loc_sb_flat" flatten_param { axis: 1 } } layer { name: "Fifth_norm_mbox_conf_1x1_conv" type: "Convolution" bottom: "Fifth_norm" top: "Fifth_norm_mbox_conf_1x1_conv" convolution_param { num_output: 8 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.10000000149 } } } layer { name: "Fifth_norm_mbox_conf_dw_conv" type: "ConvolutionDepthwise" bottom: "Fifth_norm_mbox_conf_1x1_conv" top: "Fifth_norm_mbox_conf_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } convolution_param { num_output: 8 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "Fifth_norm_mbox_conf_bn" type: "BatchNorm" bottom: "Fifth_norm_mbox_conf_dw_conv" top: "Fifth_norm_mbox_conf_dw_conv" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { moving_average_fraction: 0.999000012875 eps: 0.0010000000475 } } layer { name: "Fifth_norm_mbox_conf_sb" type: "Scale" bottom: "Fifth_norm_mbox_conf_dw_conv" top: "Fifth_norm_mbox_conf_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { type: "constant" value: 1.0 } bias_term: true bias_filler { type: "constant" value: 0.0 } } } layer { name: "Fifth_norm_mbox_conf_sb_perm" type: "Permute" bottom: "Fifth_norm_mbox_conf_dw_conv" top: "Fifth_norm_mbox_conf_sb_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "Fifth_norm_mbox_conf_sb_flat" type: "Flatten" bottom: "Fifth_norm_mbox_conf_sb_perm" top: "Fifth_norm_mbox_conf_sb_flat" flatten_param { axis: 1 } } layer { name: "Fifth_norm_mbox_priorbox" type: "PriorBox" bottom: "Fifth_norm" bottom: "data" top: "Fifth_norm_mbox_priorbox" prior_box_param { min_size: 213.0 max_size: 264.0 aspect_ratio: 2.0 flip: true clip: false variance: 0.10000000149 variance: 0.10000000149 variance: 0.20000000298 variance: 0.20000000298 step: 100.0 offset: 0.5 } } layer { name: "Sixth_norm" type: "Normalize" bottom: "Sixth" top: "Sixth_norm" norm_param { across_spatial: false scale_filler { type: "constant" value: 20.0 } channel_shared: false } } layer { name: "Sixth_norm_mbox_loc_1x1_conv" type: "Convolution" bottom: "Sixth_norm" top: "Sixth_norm_mbox_loc_1x1_conv" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.00999999977648 } } } layer { name: "Sixth_norm_mbox_loc_dw_conv" type: "ConvolutionDepthwise" bottom: "Sixth_norm_mbox_loc_1x1_conv" top: "Sixth_norm_mbox_loc_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } convolution_param { num_output: 16 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "Sixth_norm_mbox_loc_bn" type: "BatchNorm" bottom: "Sixth_norm_mbox_loc_dw_conv" top: "Sixth_norm_mbox_loc_dw_conv" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { moving_average_fraction: 0.999000012875 eps: 0.0010000000475 } } layer { name: "Sixth_norm_mbox_loc_sb" type: "Scale" bottom: "Sixth_norm_mbox_loc_dw_conv" top: "Sixth_norm_mbox_loc_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { type: "constant" value: 1.0 } bias_term: true bias_filler { type: "constant" value: 0.0 } } } layer { name: "Sixth_norm_mbox_loc_sb_perm" type: "Permute" bottom: "Sixth_norm_mbox_loc_dw_conv" top: "Sixth_norm_mbox_loc_sb_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "Sixth_norm_mbox_loc_sb_flat" type: "Flatten" bottom: "Sixth_norm_mbox_loc_sb_perm" top: "Sixth_norm_mbox_loc_sb_flat" flatten_param { axis: 1 } } layer { name: "Sixth_norm_mbox_conf_1x1_conv" type: "Convolution" bottom: "Sixth_norm" top: "Sixth_norm_mbox_conf_1x1_conv" convolution_param { num_output: 8 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.10000000149 } } } layer { name: "Sixth_norm_mbox_conf_dw_conv" type: "ConvolutionDepthwise" bottom: "Sixth_norm_mbox_conf_1x1_conv" top: "Sixth_norm_mbox_conf_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } convolution_param { num_output: 8 bias_term: false pad: 1 kernel_size: 3 stride: 1 } } layer { name: "Sixth_norm_mbox_conf_bn" type: "BatchNorm" bottom: "Sixth_norm_mbox_conf_dw_conv" top: "Sixth_norm_mbox_conf_dw_conv" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { moving_average_fraction: 0.999000012875 eps: 0.0010000000475 } } layer { name: "Sixth_norm_mbox_conf_sb" type: "Scale" bottom: "Sixth_norm_mbox_conf_dw_conv" top: "Sixth_norm_mbox_conf_dw_conv" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { type: "constant" value: 1.0 } bias_term: true bias_filler { type: "constant" value: 0.0 } } } layer { name: "Sixth_norm_mbox_conf_sb_perm" type: "Permute" bottom: "Sixth_norm_mbox_conf_dw_conv" top: "Sixth_norm_mbox_conf_sb_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "Sixth_norm_mbox_conf_sb_flat" type: "Flatten" bottom: "Sixth_norm_mbox_conf_sb_perm" top: "Sixth_norm_mbox_conf_sb_flat" flatten_param { axis: 1 } } layer { name: "Sixth_norm_mbox_priorbox" type: "PriorBox" bottom: "Sixth_norm" bottom: "data" top: "Sixth_norm_mbox_priorbox" prior_box_param { min_size: 264.0 max_size: 315.0 aspect_ratio: 2.0 flip: true clip: false variance: 0.10000000149 variance: 0.10000000149 variance: 0.20000000298 variance: 0.20000000298 step: 300.0 offset: 0.5 } } layer { name: "mbox_loc" type: "Concat" bottom: "First_out_norm_mbox_loc_sb_flat" bottom: "Second_out_norm_mbox_loc_sb_flat" bottom: "Third_out_norm_mbox_loc_sb_flat" bottom: "Fourth_norm_mbox_loc_sb_flat" bottom: "Fifth_norm_mbox_loc_sb_flat" bottom: "Sixth_norm_mbox_loc_sb_flat" top: "mbox_loc" concat_param { axis: 1 } } layer { name: "mbox_conf" type: "Concat" bottom: "First_out_norm_mbox_conf_sb_flat" bottom: "Second_out_norm_mbox_conf_sb_flat" bottom: "Third_out_norm_mbox_conf_sb_flat" bottom: "Fourth_norm_mbox_conf_sb_flat" bottom: "Fifth_norm_mbox_conf_sb_flat" bottom: "Sixth_norm_mbox_conf_sb_flat" top: "mbox_conf" concat_param { axis: 1 } } layer { name: "mbox_priorbox" type: "Concat" bottom: "First_out_norm_mbox_priorbox" bottom: "Second_out_norm_mbox_priorbox" bottom: "Third_out_norm_mbox_priorbox" bottom: "Fourth_norm_mbox_priorbox" bottom: "Fifth_norm_mbox_priorbox" bottom: "Sixth_norm_mbox_priorbox" top: "mbox_priorbox" concat_param { axis: 2 } } layer { name: "mbox_conf_reshape" type: "Reshape" bottom: "mbox_conf" top: "mbox_conf_reshape" reshape_param { shape { dim: 0 dim: -1 dim: 2 } } } layer { name: "mbox_conf_softmax" type: "Softmax" bottom: "mbox_conf_reshape" top: "mbox_conf_softmax" softmax_param { axis: 2 } } layer { name: "mbox_conf_flatten" type: "Flatten" bottom: "mbox_conf_softmax" top: "mbox_conf_flatten" flatten_param { axis: 1 } } layer { name: "detection_out" type: "DetectionOutput" bottom: "mbox_loc" bottom: "mbox_conf_flatten" bottom: "mbox_priorbox" top: "detection_out" include { phase: TEST } detection_output_param { num_classes: 2 share_location: true background_label_id: 0 nms_param { nms_threshold: 0.449999988079 top_k: 400 } save_output_param { output_directory: "/home/dev/data/OverHead_250x141devkit/results/OverHead_250x141/DCOD300_250x141/Main" output_name_prefix: "comp4_det_test_" output_format: "VOC" label_map_file: "/home/dev/TarekDeepLearningDataset/OverHead_250x141/labelmap.prototxt" name_size_file: "/home/dev/TarekDeepLearningDataset/OverHead_250x141/OverHead_250x141_names_min_size.txt" num_test_image: 4952 } code_type: CENTER_SIZE keep_top_k: 200 confidence_threshold: 0.00999999977648 } }